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Abstract. Feature selection algorithms can reduce the high dimensionality of 
textual cases and increase case-based task performance. However, conventional 
algorithms  (e.g.,  information  gain)  are  computationally  expensive.  We 
previously showed that, on one dataset, a rough set feature selection algorithm 
can  reduce  computational  complexity  without  sacrificing  task  performance. 
Here  we  test  the  generality  of  our  findings  on  additional  feature  selection 
algorithms,  add  one  data  set,  and  improve  our  empirical  methodology.  We 
observed  that  features  of  textual  cases  vary  in  their  contribution  to  task 
performance  based  on  their  part-of-speech,  and  adapted  the  algorithms  to 
include a part-of-speech bias as background knowledge. Our evaluation shows 
that injecting this bias significantly increases task performance for rough set 
algorithms,  and  that  one  of  these  attained  significantly  higher  classification 
accuracies  than  information  gain.  We  also  confirmed  that,  under  some 
conditions,  randomized  training  partitions  can  dramatically  reduce  training 
times for rough set algorithms without compromising task performance. 

1 Introduction

Textual  case-based  reasoning  (TCBR)  is  a  case-based  reasoning  (CBR)  subfield 
concerned with the use of textual knowledge sources (Weber  et  al.,  2005).  TCBR 
systems differ in the degree to which their text  content is  used; some are  weakly 
textual CBR while others are strongly textual CBR, meaning that textual information 
is the focus of reasoning (Wilson & Bradshaw, 2000).  Applications such as email 
categorization, news categorization, and spam filtering require the use of  strongly 
textual CBR methodologies. Most of these systems use a bag-of-words or term-based 
representation for cases (e.g., Wiratunga et al., 2004; Delany et al., 2005), which  can 
be problematic for textual case bases that have thousands of features. For example, 
this huge dimensionality could reduce accuracies on classification tasks and/or result 
in large computational costs. 

A variety of feature selection algorithms can be used to address this issue.  For 
example,  these  include  conventional  algorithms  such  as  document  frequency, 
information gain, and mutual information (Yang & Pederson, 1997). Wiratunga et al. 
(2004) extended these algorithms to include boosting and feature generalization with 
considerable  success.  However,  some of  these  conventional  algorithms  have high 
computational complexity, which can be a problem when a TCBR system is applied 
to dynamic decision environments that require frequent case base maintenance. 
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Feature  selection  algorithms  based  on  rough  set  theory  (RST)  rather  than 
conventional algorithms can potentially alleviate this high computational complexity 
and also increase the task performance of TCBR systems. RST is a relatively novel 
approach for decision making with incomplete information (Pawlak, 1991). Feature 
selection algorithms motivated by RST have been applied with much success in non-
textual CBR systems (e.g., Pal & Shiu, 2004). Recently, these algorithms have been 
applied to textual data sets. For example,  Chouchoulas and Shen (2001) applied a 
rough set algorithm called QuickReduct to select features for an email categorization 
task.  Also,  we examined a rough set  feature selection algorithm, called  Johnson’s 
reduct, to a multi-class classification problem (Gupta  et al., 2005). We empirically 
demonstrated that this algorithm, for one data set, was an order of magnitude faster 
than information gain and yet provided comparable classification performance. We 
also introduced a methodology that randomly partitions a training set, and selects and 
merges features from each partition. This  randomized training partitions  procedure 
can dramatically reduce feature selection time. We showed that its combination with 
Johnson’s reduct was effective. 

In  this  paper,  we  extend  our  earlier  work  on  feature  selection  for  TCBR 
classification tasks by exploring additional  rough set  algorithms.  In  particular,  we 
introduce  a  variant  of  Li  et  al.’s  (2006)  relative  dependency  metric,  called  the 
marginal relative dependency metric, and explore its effectiveness with randomized 
training  partitions.  In  addition,  we  introduce  the  notion  of  part-of-speech  bias in 
textual case bases. This is based on our observation that textual features with different 
parts of speech may inherently differ in their ability to contribute to reasoning. For 
example,  noun  features  may  contribute  more  than  verb  features,  as  described  in 
Section  3.4.  Adapting  rough  set  and  conventional  feature  selection  algorithms  to 
incorporate  this  bias  could improve their  performance.  We empirically  investigate 
these issues on two data sets. 

The rest of this paper is organized as follows. Section 2 introduces RST and two of 
its  derivative  feature  selection  algorithms.  We  also  include  a  description  of 
randomized training partitions and introduce the notion of part-of-speech bias. We 
present  an  empirical  evaluation  of  the  feature  selection  algorithms  and  their 
interaction with randomized training partitions and part-of-speech bias in Section 3. 
We  review  related  work  on  feature  selection  in  Section  4  and  conclude  with  a 
discussion of our plans for future research in Section 5.

2 Rough Set Theoretic Feature Selection 

2.1 Building Blocks of Rough Set Theory

For the sake of clarity for this audience, we use established CBR terminology, such as 
cases and  features,  to  present  the  elements  of  RST.  RST is  based  on  a  formal 
description of an information system (Pawlak, 1991). An information system S is a 
tuple S = C, F, V  where:

C = {c1, c2, …, cn} denotes a non-empty, finite set of cases,
F = {f1, f2, …, fm} denotes a non-empty, finite set of features (or attributes), and 
V = {V1, V2, …, Vm} is the set of value domains for the features in F.



A decision table is a special case of an information system where we distinguish two 
kinds of features: (1) a class (or decision) feature fd, and (2) the standard conditional 
features Fp, which are used to predict the class of a case. Therefore, F = Fp  { fd}.  

We will explain RST concepts using the trivial case base in Table 1, which pertains 
to making hiring decisions based on three features.  Central to RST is the notion of 
indiscernibility.  Examining  the  cases  in  Table  1,  we  see  that  cases  c1=Anna and 
c2=Bill  have  identical  values  for  all  the  features,  and  thus  are indiscernible with 
respect to the three conditional features f1, f2, and f3. More broadly, a set of cases C' is 
indiscernible with respect to a set of features F'  F if the following is true:

IND(F',C)= { C' C  | fF', ci,cj (ij)C'  f(ci) = f(cj)} (1)
Thus, two cases are indiscernible with respect to features in F' if they have identical 
values for all the features in F'. 

An indiscernibility relation is an equivalence relation that partitions the set of cases 
into equivalence classes. Each equivalence class contains a set of indiscernible cases 
for the given set of features F'. For example, given the hiring decision table: 

IND(F', C) = {{ c1 , c2}, { c3 },{ c4 },{ c5 , c6}}

where F'={age, experience, grades} and C={c1,c2,c3,c4,c5,c6}. The equivalence class 
of a case  ci with respect to selected features  F' is  denoted by [ci]F'.  Based on the 
equivalence classes, RST develops two kinds of set approximations. First, given sets 
C' C and F' F, the lower approximation of C' with respect to F' is defined as:

lower(C, F', C') = {cC | [c]F'  C'} (2)

or the collection of cases whose equivalence classes are subsets of  C'. Second, the 
upper approximation of C' with respect to F' is instead defined as:

upper(C, F', C') = {c  C | [c]F'  C'   } (3)
or the collection of cases whose equivalence classes have a non-empty intersection set 
with C'. A set of cases C' is crisp (or definable) if lower(C, F',C') = upper(C, F',C'), 
and is otherwise rough.  

 For example, in the hiring decision table, consider C'{hired=yes}= {c1, c4, c5, c6}, then 
the  lower  and  upper  approximations  of  C'{hired=yes} with  respect  to  F'={age,  
experience, grades} are:

lower(C, F',C'{hired=yes})={c4, c5, c6} and upper(C, F',C'{hired=yes}) ={c1, c2, c4, c5, c6}
Case  c1 is  not  included  in  the lower  approximation because  its  equivalence  class 
{c1,c2}  is  not  a  subset  of  C'{hired=yes}.  However,  it  is  included  in  the  upper 
approximation  because  its  equivalence  class  has  a  non-empty  intersection  with 
C'{hired=yes}. 

Table 1.  A case base fragment for hiring decisions
Cases f1 = age f2 = experience f3= grades fd =hired
c1 = Anna 21-30 none good yes
c2 = Bill 21-30 none good no
c3= Cathy 21-30 4-6 average no
c4 = Dave 31-40 1-3 excellent yes
c5 = Emma 31-40 4-6 good yes
c6 = Frank 31-40 4-6 good yes



Another important RST element is the notion of a set called the  positive region. 
The positive region of a decision feature fd with respect to F' F is defined as: 

POSF'(fd,C) =  { lower(C, F',C') | C'  IND({fd},C)} (4)

or the collection of the F'-lower approximations corresponding to all the equivalence 
classes of fd. For example, the positive region of fd {hiring} with respect to F'={age,  
experience, grades}, where lower(C, F',C'{hired=no})={c3}, is as follows:

POSF'(fd,C) = lower(C, F',C'{hired=yes})   lower(C, F',C'{hired=no})={c3, c4, c5, c6}

The  positive  region  can  be  used  to  develop  a  measure  of  a  feature’s  ability  to 
contribute information for decision making. A feature f  F' makes no contribution or 
is dispensable if POSF'(fd,C) = POSF'-{fd}(fd,C)  and is indispensable otherwise. That is, 
removing the feature  fd  from F' does not change the positive region of the decision 
feature.  Therefore,  features  can  be  selected  by  checking  whether  they  are  
indispensable with respect to a decision variable. The minimal set of features F', F'  
F, is called a reduct if POSF'(fd,C) = POSF(fd,C). 

Often,  an information system has  more  than one possible reduct.  Generating a 
reduct of minimal length is  a NP-hard problem. Therefore,  in practice,  algorithms 
have been developed to generate one “good” reduct. Next, we present our adaptations 
of two such algorithms: (1) Johnson’s heuristic algorithm and (2) the marginal relative 
dependency algorithm. 

2.2 Feature Selection with Johnson’s Heuristic Algorithm

We adapted Johnson’s (1974) heuristic to compute reducts as follows. It sequentially 
selects features by finding those that are most discernible for a given decision feature 
(see Figure 1). It computes a discernibility matrix M, where each cell mi,j of the matrix 
corresponding to cases  ci and  cj includes the conditional features in which the two 
cases’ values differ. Formally, we define strict discernibility as:

mi,j = {{ f  Fp: f(ci )  f(cj)} for fd(ci) ≠ fd(cj), and  otherwise } (5)
JOHNSONSREDUCT(Fp, fd, C)
Input    Fp: conditional features, fd: decision feature, C: cases
Output  R: Reduct R  Fp

1 R, F'Fp

2 M computeDiscernibilityMatrix(C, F', fd)
3 do
4 fh selectHighestScoringFeature(M)
5 R R  {fh}
6 for (i=0 to |C|, j=i to |C|)
7 mi,j   if fh  mi,j

8 F' F' – {fh}
9 until mi,j =  i, j
1 return R



0

Figure 1. Pseudocode for Johnson’s heuristic algorithm
Given such a matrix M, for each feature, the algorithm counts the number of cells in 
which it appears.  The feature  fh with the highest number of entries is selected for 
addition to the reduct R. Then all the entries mi,j that contain fh are removed and the 
next best feature is selected. This procedure is repeated until M is empty.  

The  computational  complexity  of  JOHNSONSREDUCT is  O(VC2),  where  V is  the 
(typically  large)  vocabulary  size  and  bounds the  number  of  times  the  do  loop is 
executed. However, this is a loose upper bound that is better approximated by O(RC2), 
where is  R<<V.  Comparing this  complexity  with the computational complexity  of 
information  gain,  which  is  O(MVC),  where  M is  the  number  of  classes,  the 
complexity  of  JOHNSONSREDUCT is  lower  because,  typically,  RC<MV.  However,  the 
worst  case  space  complexity  of  JOHNSONSREDUCT is  O(VC2),  which  is  significantly 
greater than Information Gain’s space complexity of O(VC). 

In TCBR applications, each case may have only a small subset of features. Strict  
discernibility could be implemented as follows: f(ci)  f(cj) if only one of the cases ci  

or cj contains the term denoted by the feature f. However, such an approach ignores 
the  information contained  in  the  variation of  term frequencies  (i.e.,  value)  across 
cases. Hence, a graded or fuzzy notion of indiscernibility, instead of a strict notion, 
may  be  more  effective  (e.g.,  Skowron,  1995).  We  extend  strict  discernibility  to 
graded or fuzzy discernibility using a similarity computation as follows.  In Equation 
5, we consider:

f(ci)  f(cj), when sim(f(ci), f(cj)) < τf (6)

where (0<τf  <1) is a user defined similarity threshold. We adapt a similarity measure 
for ordinal scales (Montazemi & Gupta, 1997) to compute the similarity between two 
non-zero frequency valued features as follows:

sim(f(ci), f(cj)) = 
1abs((f(ci) f(cj))/ψ.σ f, when abs((f(ci)f(cj))  ψ.σ f  
0, otherwise

(7)

where σ f is the standard deviation of non-zero frequency values for feature f, and ψ > 
0 is a user-defined parameter for adjusting similarity sensitivity. For example, for a 
feature f  with σ f =1.87 and ψ=1,

sim(4, 5) = 1  abs(45)/1.87*1 = 0.465

Similarly,  the  issue  of  class  feature  discernibility  arises  in  TCBR  for  multiclass 
classification tasks  in  which  more  than  one  class  can  be  assigned  to  a  case.  For 
example,  topic  assignment  is  a  multi-class  classification  task.  In  Equation  5,  we 
consider:

fd(ci) ≠ fd(cj), when sim(fd(ci), fd(cj)) < τd (8)

where fd(ci) can be a set of values, sim(fd(ci), fd(cj)) yields the ratio of the intersection 
of its values to their union, and 0 < τ d < 1 is a user defined similarity threshold.

2.3 Feature Selection using Marginal Relative Dependency 

In  Section  2.1,  we  described  how  an  indiscernibility  (or  equivalence)  relation 
partitions a case base C into equivalence classes with respect to a set of features F'. 



Intuitively, with an increase in the number of features in F', we expect the number of 
equivalence classes to increase and each equivalence class to contain fewer cases. The 
degree of relative dependency of a set of features  F' builds on this intuition. For a 
decision feature fd and a set of features F', it is defined as (Li et al., 2006):

)(
)(

' C
C

d

d

fF

Ff
F

Π

Π


'

'δ (9)

where )(CF'Π   is the set of equivalence classes generated over C with respect to 

features F'  and  )(C
dfF Π '  is the set of equivalence classes generated over C 

with respect to features F'  {fd}. Clearly, the maximum value of  df
F 'δ  is 1. Based 

on this measure, we compute the marginal contribution of a feature  f  (i.e., marginal 
relative dependency), denoted by µf, as follows:

dd f
F

f
fFf '' δδµ   }{ (10)

In addition to using  µf as a metric for selecting features,  it  can also be used as a 

feature weight because 1
Rf

fµ , where R is a reduct. 

Our variation on this reduct computation algorithm, called the  Marginal Relative 
Dependency  algorithm (MRD),  is  as  follows  (see  Figure  2).  At  each  iteration,  it 
computes the marginal relative dependency of all the candidate features T, selects the 
feature fm  with the maximum marginal relative dependency, and adds it to the reduct 
R. The algorithm terminates when the relative dependency δR  = β , where β  is a user 
defined parameter in the range (0 < β <1).  In a TCBR application, it is possible that 
beyond a certain point both  µf   and  df

F 'δ  may behave asymptotically. Therefore,  β 

can be specified to terminate the feature selection process early.    

MRD(Fp, fd, C)
Input    Fp: Conditional features, fd: Decision feature, C: Cases, β: Threshold
Output  R: Reduct R  Fp

1 R, F'Fp, δR0
3 do 
4 <fm, µm>  selectMaximallyContributingFeatureAndValue(F',C)
5 R R  {fm}
6 F'  F'  {fm}
7 δR  δR  + µm
8 until δR = β
9 return R

Figure 2. Pseudocode for the Marginal Relative Dependency algorithm (MRD)

Like JOHNSONSREDUCT, the determination of equivalence classes in MRD can be based 
on a strict or graded notion of discernibility. For the graded notion of discernibility we 
apply Equations 6, 7, and 8.



The worst case computational complexity of MRD is O(RVC2). For large textual 
case bases, this is an order of magnitude more complex than  JOHNSONSREDUCT  and 
information gain. However, its worst case space complexity is only O(VC).

2.4 Feature Selection with Random Training Set Partitions

The computational complexities of the feature selection algorithms discussed above 
depend on C, the number of training cases. The complexities of both RST approaches, 
JOHNSONSREDUCT and MRD, are a function of the square of the number of training 
cases. Therefore, reducing the number of training cases that need to be considered at 
one  time  can  dramatically  reduce  feature  selection  and  training  time.  We  can 
accomplish this by using randomized training partitions (RTP) (Gupta et al., 2005), 
which is a procedure with the following steps:

1. Randomly create m equal-sized partitions of the training set.
2. From each partition, select features using a feature selection algorithm (e.g., 

JOHNSONSREDUCT or MRD).
3. Define  the  final  feature  set  as  the  union  of  features  selected  from  each 

partition.

This approach could reduce the training time by a factor of  m for the RST feature 
selection algorithms.

2.5 POS-Biaser: A Part-of-speech Bias Adjustment Method

In  TCBR, words  or  terms are  typically  used  as  features.  The linguistic  attributes 
associated  with  such  features  (e.g.,  part-of-speech  (POS),  syntactic  roles)  could 
impact feature selection and TCBR task performance. For example, it is likely that 
noun features  are generally  more  informative  than verb  features  possibly because 
nouns are an  open class of words, whereas verbs, adjectives, adverbs, prepositions, 
and pronouns are closed classes of words (Quirk et al., 1985). Open word classes are 
frequently  extended  to  include  new  words,  whereas  closed  classes  are  rarely 
extended.  Thus,  a  large  percentage  of  terms  in  a  typical  vocabulary  are  nouns. 
However, each noun feature may occur in relatively fewer cases and has the potential 
to  be more informative towards a decision. In  contrast,  verbs  tend to  occur more 
frequently across many cases. Also, there is considerable flexibility in the choice of 
verbs used to express the case content. This causes variability in verb expressions that 
could  be  inappropriately  construed  as  informative  (e.g.,  by  information-theoretic 
measures)  and  as  a  result  may  be  favored  by  feature  selection  algorithms.  For 
example, this would adversely affect JOHNSONSREDUCT, which relies on pair-wise case 
comparisons to construct a discernibility matrix. It is likely to select spurious verbs, 
as could MRD and information gain (IG) (Yang & Pederson, 1997).

One way to counter the effect of this inherent potential bias of textual case bases is 
to  bias  the  feature  selection  algorithms accordingly.  Thus,  we introduce  a  simple 
methodology,  called  POS-Biaser,  to  use  in  combination  with  a  feature  selection 
algorithm. POS-Biaser assumes that part-of-speech tagging is performed during the 
case indexing process. This is feasible because part of speech taggers are publicly 
available (e.g., Brill, 1993). POS-Biaser uses a POS biasing factor ρpos for each POS 



along with a feature selection metric to select features. For example, when ρnoun = 1.8, 
ρverb = 0.6,  ρadjective  = 1, and  ρadverb = 0.3, the feature selection algorithm’s values for 
nouns are inflated to 1.8 times their original value, the values for verbs are deflated to 
0.6 times their original value, and so on.

The POS-Biased JOHNSONSREDUCT includes a modification to the step that executes 
selectHighestScoringFeature(M) (Figure 1, line 4),  which computes the number of 
cell  entries  as  the  score  of  each  feature  (i.e.,  the  feature  selection  metric).  In 
particular,  feature  scores  are  now multiplied  by  their  respective  ρpos values.  This 
would bias JohnsonsReduct to select more noun features than its unbiased version. 
Likewise, we accommodate a POS bias in MRD by similarly modifying the statement 
that executes selectMaximallyContributingFeatureAndValue(F',C). 

3 Evaluation

3.1 Claims and Empirical Methodology 

We evaluated the feature selection algorithms described in this paper to explore the 
following hypotheses:

1. Rough set methods perform as well as or outperform information gain on our 
case-based classification tasks.

2. The performances of rough set feature selection algorithms are affected by the 
POS bias in textual case bases.

3. RTP is an effective way to dramatically reduce feature selection time without 
compromising case-based task performance.  

We selected both a  single  and a  multi-classification task to evaluate the utility of 
the feature selection and POS-biasing algorithms for a simple case-based classifier. 
Single classification involves assigning exactly one class label to a new text case, 
while multi-classification involves assigning one or more class labels. For example, 
sorting emails into a known set of folders is a single classification task and assigning 
one or more topic to news articles is a multi-classification task.
We selected tasks from two data sets, one for each type of classification task. The first 
data  set  is  Reuters-21578  (Reuters,  2006);  it  contains  news  items  and  its  multi-
classification task concerns assigning topics to these items. The second data set is a 
subset of 20-News Groups (Lang, 2006); it contains news group emails and its single 
classification task concerns assigning a news group label to each of these emails. Due 
to the relatively high computational and space complexities of the algorithms being 
tested, we selected only the first ten news groups for evaluation in this data set; we 
call this 10-News Groups. Table 2 summarizes the characteristics of both data sets.

Table 2. A summary of the characteristics of the data sets used in the experiments
Characteristic Reuters-21578 10-News Groups

Number of Cases 11,330 (with more than 0 topics) 10,013
Number of Classes 110 10
Num. Cases per class 103 (Avg.) 1001.3 (Avg.)
Num. Classes per Case 1.26 (Avg.), 1 (min.), 16 (max.) 1
Num. Words per case 137 (Avg.) 200.35 (Avg.)



 We used two rough set  feature selection algorithms (JohnsonsReduct (JR) and 
MRD)  and  one  conventional  feature  selection  algorithm,  namely  IG  (Yang  & 
Pederson, 1997). In the experiments, for a fair comparison, we ensured that all the 
algorithms selected the same number of features, and used JR to determine how many 
features to select. Finally, we also incorporated the POS bias in each feature selection 
algorithm, and refer to them as JRB, MRDB, and IGB, respectively.

Our  feature  generation  algorithm  performs  tokenization,  POS  tagging,  and 
morphotactic parsing to create POS-tagged terms as features. Morphotactic parsing is 
a more involved method than simple stemming; it reduces terms to their baseforms 
even across different POS (Gupta & Aha, 2004). For example, it reduces the noun 
“computer” to the verb “compute”. Features with document frequency greater than 
two were considered for feature selection.

We applied a k-nearest neighbor classifier with the fuzzy feature similarity function 
described  in  Equation  7  to  evaluate  classification  performance  using  the  selected 
features.  (We  set  k=5  based  on  feedback  from our  initial  empirical  studies.)  All 
features  were  weighted  equally  to  isolate  the  selection behaviors  of  the  feature 
selection algorithms in our experiments.  Multi-classification task performance was 
measured using 11-point average precision, which is the average precision obtained at 
recall  thresholds of (0%, 20%, …100%). The classifier assigns as many topics as 
needed until a given recall is achieved (Yang & Pederson, 1997). Performance on the 
single classification task was measured as classification accuracy. We also measured 
feature selection time (in seconds) for each algorithm.

We used a two-fold cross validation strategy to evaluate the algorithms. Two sets of 
two folds were randomly created. For RTP, all the algorithms were run with the same 
set  of  10, 20, 30, and 40 randomized training partitions in each fold.  We did not 
experiment  without  partitions  due  to  the  RTS algorithms’ high computational  and 
memory requirements.  

3.2 Empirical Results 



Results  with  the  Reuters-
21578  Data  Set.  The  key 
results for the six algorithms 
(i.e.,  JR,  IG,  MRD,  JRB, 
IGB,  and  MRDB)  on  this 
data set are shown in Figures 
3-5. JR selected an average of 
95.5,  118,  135,  and  139.5 
features for partitions of size 
10,  20,  30,  and  40, 
respectively.  Increasing  the 
number  of  RTP  partitions 
increases  the  chance  of 
selecting different features in 
different  partitions,  which 
increases  the total  number of  unique 
features selected. 

We  comparatively  analyzed  the 
algorithms’ precision results using one-tailed paired student t-tests. Comparisons of 
the  feature  selection  algorithms’  unbiased  versions  show  that  JR  significantly 
outperformed IG for every number of partitions tested (e.g., 76.72% vs. 70.17% at 10 
partitions  [p=.0006]),  as  did  MRD  (e.g.,  79.21%  vs.  75.86%  at  40  partitions 
[p=.0018]).  Therefore,  both  the  rough  set  feature  selection  methods  significantly  
outperformed a conventional feature selection method. In addition, MRD significantly 
outperformed JR at partitions of 30 and 40 (e.g., 79.20% vs. 77.83% at 40 partitions 
[p=.0003]), but the reverse was true for 10 partitions.  

Comparing the POS-biased versions of the feature selection algorithms with their 
respective  unbiased  versions  shows  that  JRB  and  IGB  outperform  JR  and  IG 
respectively  at  all  RTP  sizes.  For  example,  at  30  partitions,  JRB  significantly 
outperforms JR (82.61% vs. 77.26% [p=.0007]) and IGB significantly outperforms IG 
(76.84% vs.74.79% [p=.0019]).  However,  MRDB significantly  outperforms  MRD 
only  at  10  and  20  partitions;  for  30  and  40  partitions  there  was  no  significant 
difference.  Overall,  POS  bias  had  a  positive  effect  on  all  the  feature  selection  
algorithms, including IG. It was 
most  effective  with  JR,  whose 
classification  accuracy 
improved  by  6.1% on average 
versus  its  unbiased  version. 
Finally,  when adjusted for POS 
bias,  JR recorded  significantly  
higher  precision  results  than 
the  other  feature  selection 
algorithms we tested.  

Figure 4 shows the effect of 
POS  bias  on  the  three  feature 
selection  algorithms  for 
Reuters-21578 at  10 partitions. 
The proportion of noun features 
without bias were at comparable levels for JR and IG (each at 71%) and slightly 

Figure 5. Feature selection times (Reuters-21578)
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Figure 3. Precision performance (Reuters-21578)
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Figure 4. The effect of  POS-bias on the number 
of noun features selected by the three algorithms 
for Reuters-21578 using 10 RTP partitions
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lower for MRD (64%). With this bias, the proportion of noun features increased to 
93% for  JR and  IG  and  94% for  MRD.  The increase  in  the  proportion  of  noun 
features was comparable and consistent across the three algorithms, yet its effect on 
JR’s precision performance was most substantial. Thus, we conclude that JR is most 
sensitive to POS bias. 

Figure 5 shows the feature selection times for IG, JR, IGB, and JRB. JR has the 
lowest  feature  selection  time.  It  decreased  by  81.92%  from  510  seconds  at  10 
partitions  to  92  seconds  at  40  partitions,  without  decreasing  average  precision, 
demonstrating that RTP is highly effective. Its biased version (JRB) has higher feature 
selection times (10,382 sec. at 10 to 738 sec. at 40 partitions) but achieves a similar 
decrease in feature selection time as the number of partitions increases. JRB’s times 
are higher  than JR’s  because POS bias  significantly  increases  the reduct sizes.  In 
contrast, IG and IGB have the same feature selection times. It reduces by 54% (3780 
seconds to 1725 seconds) as the number of partitions is increased from 10 to 40. As 
expected,  MRD  has  extremely  long  feature  selection  times  (99,843  sec.  at  10 
partitions to 22,276 sec. at 40 partitions; not shown in Figure 5), and MRDB times are 
even longer. However, they both recorded a substantial drop in feature selection time 
as the number of partitions was increased. Therefore,  RTP is effective in reducing 
feature selection time on Reuters-21578 for the three algorithms we tested.

Results with the 10-News Groups Data Set. As with the Reuters-21578 data set, we 
again  used  the  number  of  features  selected  by  JR  as  a  baseline  for  the  other 
algorithms. It selected an average of 123, 134.75, 141.25, & 153.5 features at 10, 20, 
30, and 40 partitions, respectively. 

Comparison of the unbiased 
versions  of  the  algorithms 
show  that  IG  attains 
significantly  higher  accuracies 
than the others at all RTP levels 
on  the  10-News  Groups  data 
(see Figure 6). For example, at 
30 partitions, IG outperformed 
JR  (70.31%  vs.  51.74%, 
[p=.0005])  and  MR  (70.31% 
vs.  57.82%,   p=.0005]).   This 
contrasts  with  its 
comparatively  poor  precision 
performance  on  the  Reuters-
21578 data set. 

Comparing the two rough set methodologies with each other reveals that  MRD 
significantly outperformed JR at 30 and 40 partitions (e.g., 57.82 % vs. 51.74% at 30 
partitions, [p=.022]). This finding is consistent  with those on the Reuters data set. 
However, MRD’s performance could not be objectively compared with JR at 10 and 
20 partitions because it selected fewer features than JR at those partitions. 

Comparing  the  algorithms’ biased  and  unbiased  versions  show  that  JRB  and 
MRDB  attain  significantly  higher  classification  accuracies  than  JR  and  MRD, 
respectively. For example, JRB’s average accuracy is significantly higher than JR’s at 
30  partitions  (74.68%  vs.  51.74%,   [p=.0006])  and  MRDB  outperforms  MRD 
(61.47% vs. 57.82%, [p=.022]). In contrast, IG was adversely affected by bias. That 

Figure 6. Classification accuracies (10-News Groups)
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is, IG performed slightly better than 
IGB (e.g., 70.31% vs. 69.36% at 30 
partitions),  although this  difference 
was  small  and  statistically 
insignificant.  Overall,  JRB 
significantly outperformed the other  
algorithms  at  20,  30,  and  40 
partitions.  For  example,  it  attained 
significantly  higher  average 
classification  accuracies  than  IG 
(74.7%  vs.  70.3%  at  30  partitions 
[p=.0018]).

One possible reason could be that 
we  used  the  same  POS  bias 
parameter  settings  for  all  the 
algorithms,  but  IG  may  require 
different  settings.  We  gained 
additional  insight  into  this  by 
examining the effect  of POS bias  on the algorithms (see Figure 7).  The unbiased 
versions of the algorithms selected different proportions of noun features; JR selected 
51%, IG selected 55%, and MRD selected 61% at 30 partitions. Examining the biased 
versions shows that JRB selects 96%, while IGB and MRDB select 100%, indicating 
that the bias factors may be too strong for IG and MRD.       

Analyses of  the feature selection times shows that  JR’s times steadily decrease 
from 325 seconds at 10 partitions to 60 seconds at 40 partitions and is the lowest 
among all algorithms at 20-40 partitions (see Figure 8). Feature selection times for IG 
and  IGB  remain  relatively  constant  (268  seconds,  on  average)  across  different 
partition sizes.  In  contrast,  JRB’s 
feature  selection  times  decreased 
dramatically  from  10  to  20 
partitions,  but  increased  from 30 
to  40.  This  occurred  because  the 
decrease  in  the  number  of  cases 
per  partition  is  offset  by  larger 
increases  in  the  reduct  sizes, 
thereby  leading  to  an  overall 
increase in feature selection times. 
For  the  same  reason  MRD  and 
MRDB’s  times  steadily  increase 
from 6291 seconds at 10 partitions 
to 10,134 seconds at 40 partitions 
(not shown in Figure 8).  In general, MRD selects more features than JR and this is 
further amplified for higher numbers of partitions.  Thus, RTP significantly reduces  
feature selection times for only JR and JRB on the 10-News Group data set.

Results Summary and Discussion. Given that one of the rough set methods, JR with 
suitable POS bias, outperformed IG on both the data sets, we partially accept our first 
hypothesis, which claims that rough set methods significantly outperform IG. We also 
confirmed our second hypothesis, which states that POS-bias has a positive effect on 

Figure 8. Feature selection times (10-News Groups)
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Figure 7. The effect of POS-bias on the number of 
noun features selected by the three algorithms for 
10-News Groups using 30 RTP partitions
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RST feature selection algorithms. In particular, its effect on JR was substantial (6.1% 
increase in precision in Reuters-21578, and 41.78% increase in accuracy in 10-News 
Groups). Interestingly, the effect of POS-bias on IG was mixed: positive on Reuters-
21578 and  negative  on 10-News Groups.  We conjecture  that  the  reasons  for  this 
mixed result are that the bias parameters for IG were too strong for the 10-News 
Groups set and that IG effectively counters the inherent POS bias when the number of 
cases per class is large (e.g., 1000 as opposed to 100).  

We showed that the RTP was effective in dramatically reducing feature selection 
time for  JR. However,  the effect  of RTP on MRD was mixed. It  was positive on 
Reuters-21578 and negative on 10-News Groups. Therefore, we cannot fully confirm 
our third hypothesis that RTP is always effective in reducing training time for rough 
set methods. However, without RTP it would have been practically infeasible to run 
MRD and JR. We also observed that RTP has a positive effect on IG, although small 
compared  to  RST methods.  This  is  because  increasing  the  number  of  partitions 
reduces  the  effective  vocabulary  that  IG  must  deal  with  and  IG’s  computational 
complexity is linearly dependent on the vocabulary size. 

4 Related Work

TCBR systems have been designed to support a variety of applications such as those 
involving legal reasoning (Brüninghaus & Ashley, 2003), spam filtering (Delany  et  
al., 2005), and news group classification (Wiratunga et al., 2004). Typically, TCBR 
systems that use knowledge poor approaches (e.g., for email classification) tend to 
automatically generate features and operate on large data sets. For example, Delany et  
al. (2005) used IG to select features in a spam filtering task and Wiratunga  et al., 
(2004) used IG to select features with boosted decision stumps. However, unlike us, 
they did not focus on reducing the computational complexity of their feature selection 
algorithms. Furthermore,  high computational  complexity  was not a  limiting factor 
because their binary classification task is not particularly demanding of information 
gain,  especially  given that  their  case bases  were relatively small,  containing only 
about 1000 cases. We instead investigate multi-classification and n-ary classification 
tasks involving thousands of cases, which require more attention to computational 
complexity. Despite these differences, our feature selection algorithms, randomized 
training partitions, and POS biasing can be effectively integrated with their approach.

Given a set of manually selected features, Brüninghaus & Ashley’s (2003) TCBR 
system  induces  a  set  of  classifiers  that  can  automatically  assign  features  to  text 
documents. They used ID3 to induce these classifiers. If the number of features is 
large,  its  performance would  degrade  significantly.  In  such  situations,  our  feature 
selection algorithms could significantly improve ID3’s performance.   

While RST-motivated feature selection algorithms have recently been applied to 
textual  case  bases  on  classification  tasks,  we  are  the  first  group  to   highlight 
complexity issues (Gupta  et al.,  2005).  For example,  Chouchoulas & Shen (2001) 
applied  their  QuickReduct  method  for  email  classification.  While  QuickReduct’s 
complexity (Gupta et al., 2005) is high (i.e., the same as MRD), they did not address 
complexity because their data included only 1500 cases. Furthermore, they did not 
compare QuickReduct with any conventional feature selection algorithms, such as IG. 



Li et al. (2006) developed a Fast Rough Set Feature Reduction algorithm. Unlike 
the RST algorithms we evaluated, it is not feasible to isolate the contributions of RST 
in their hybrid conventional/RST algorithm. In particular, they used IG to rank-order 
the features for selection and the relative dependency metric only to terminate feature 
selection.  Finally,  they  did  not  compare  the  performance  of  their  algorithm with 
conventional algorithms.  

 An  et al. (2004) developed a rough set feature selection method called ELEM2 
and applied it to web page classification. As with the other research groups, they did 
not address complexity issues and evaluated their algorithm on a relatively small set 
of 327 web pages. Moreover, they tested their algorithm only with the most frequently 
occurring 20, 30, and 40 keywords per category. Although this drastically reduces 
their data set’s number of features, frequency-based keyword selection is not always 
competitive with other feature selection algorithms (Yang & Pederson, 1997).

In our previous research (Gupta et al., 2005), we introduced RST motivated feature 
selection algorithms for a multi-class classification task. We also noted that the high 
computational complexity of feature selection algorithms are a  limiting factor  and 
introduced randomized training partitions to reduce training time. Finally, we showed 
that JohnsonsReduct performed comparably to IG on a single data set. In this paper, 
we extended JohnsonsReduct to work with multi-valued features and introduced the 
topic  of  fuzzy  discernibility.  In  addition,  we  introduced  MRD,  a  pure  rough  set 
version of Li et al.’s (2006) Fast Rough Set Reduction Approach. While this increases 
computational complexity, it is offset through the use of RTP. We also improved our 
evaluation methodology. For example, we eliminated variances due to differences in 
feature weighting by weighting all features equally, added a single classification task 
to improve the reliability of our conclusions, and used a two-fold cross validation 
methodology  rather  than  random  sampling.  This  has  led  us  to  qualitatively  new 
results. For example, we found randomized training partitions to be effective for both 
rough set and conventional feature selection algorithms (for the Reuters-21758 data 
set), rather than only for the former.  

Finally, we introduced the use of a POS-bias in textual case bases and described 
why it can impact feature selection. This explicit manipulation of bias appears to be 
novel; we are not aware of any prior research on using background knowledge of this 
type to assist TCBR systems on classification tasks. We showed that biasing feature 
selection  algorithms  can  significantly  increase  classification  accuracy  of  both 
conventional and RST-motivated feature selection algorithms, and that these increases 
are more substantial for the rough set algorithms.

5 Conclusion

Until  recently,  only  conventional  feature  selection  algorithms  (e.g.,  IG  and  its 
extensions)  had  been  applied  to  textual  CBR  with  little  concern  for  their 
computational complexity. In this paper, we rigorously investigated the potential of 
RST approaches to improve task performance and reduce feature selection times. We 
considered two RST algorithms: (1) JR with lower computational complexity than IG 
and (2) MRD with much higher computational complexity than IG. We evaluated the 
effect of RTP on these algorithms, a method we introduced in our previous research, 
to dramatically reduce feature selection time. In addition, we introduced a novel idea 



of part-of-speech bias in textual CBR that could affect both RST and conventional 
approaches.  Evaluation  of  these  methodologies  with  large  multi-class  and  n-ary 
classification tasks showed that JR, suitably biased, significantly outperforms IG and 
significantly benefits from RTP. Furthermore, POS bias significantly improved RST 
feature selection algorithms.

Given  that  JR  significantly  outperformed  IG  on  our  data,  we  suspect  that 
Wiratunga et al.’s (2004) boosted algorithm, which is based on IG, could significantly 
benefit from our methodologies. We also conjectured that using an appropriate POS 
bias could consistently improve IG, and that IG effectively counters bias when the 
number  of  cases  per  class  is  large.  In  our  future  work,  we will  investigate  these 
conjectures.       
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